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We present a tri-Hamiltonian formulation of the self-induced transparency (SIT) equations. 

1. Introduction 

Under certain conditions [1-3]  an optical pulse 
can propagate through a nonlinear resonant medium 
in such a way that the leading edge of its intensity 
profile excites the medium, but its trailing edge de- 
excites the medium, precisely so as to leave behind 
no energy and, thus, to propagate without loss. This 
is self-induced transparency (SIT). Energy leaves the 
pulse, coherently excites the atoms, and then returns 
to the trailing edge of the pulse with no loss, but with 
a delay caused by the temporary storage of pulse en- 
ergy in the atoms. (This delay shows up as an anom- 
alously low pulse velocity, ~ 1 0 - 3 c . )  

To the extent that resonant interaction of coherent 
light with a medium calls into play only a single 
atomic transition and the laser may be taken to be 
monochromatic, the medium has effectively only two 
levels. For sufficiently short pulse duration, the co- 
herent interaction between the pulse and the me- 
dium leading to SIT may be taken to be lossless. ( I f  
the pulse is shorter than about l0 ns, it has no ef- 
fective loss mechanisms, because it does not interact 
with any given group of atoms long enough for 
damping to take effect. ) Certainly for most lasers and 
most atoms this two-level, lossless model can he an 

excellent approximation; and is quite adequate for 
an understanding of the basic physics behind many 
coherent transient phenomena. Indeed, the experi- 
mental work of Gibbs and Slusher [3 ] leaves little 
doubt about the validity of the SIT equations based 
upon this approximation [1,2], which we write in 
the form 

( O , - O ) E = 2 < P > ,  OtP+2io tP=2DE,  

OtD= - 2  Re(EP*) . (1.1) 

In these equations E and P denote the complex 
slowly-varying amplitudes of  the self-consistent elec- 
tric field and the polarizability of the medium, while 
D is the difference of its occupation numbers. The 
quantities E and P are complex scalar functions of 
space and time and D is a real function. The symbols 
O and 0t denote partial derivatives with respect to 
space and time. The brackets < > denote averaging 
over a probability distribution g(to) representing in- 
homogeneous frequency broadening, i.e., < P > =  
f~o~ P(x ,  t, o9)g(o9) d~o. Finally, ot represents the 
detuning between the transition frequency of the me- 
dium and the resonant cavity frequency. 

Remarkably, the McCall-Hahn SIT equations fit 
into the integrable AKNS hierarchy [4,5 ], so the ini- 
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tial value problem for SIT is completely integrable. 
(See, e.g., ref. [6] for discussions of the integrable 
AKNS hierarchy and the SIT equations.) Thus, the 
SIT equations possess soliton solutions and are solv- 
able on the real line in 1 + 1 dimensions via the in- 
verse scattering transform (IST). The earlier IST re- 
sults will form the basis for our derivation of the tri- 
Hamiltonian formulation of the SIT equations. For 
convenience in what follows we treat the case in 
which detuning and inhomogeneous broadening are 
neglected, and write the SIT equations as 

(O,-O)E=2P, O,P=2DE, 

O,D= - 2  Re(EP*) .  (1.2) 

Neglecting detuning and inhomogeneous broadening 
does not affect the existence of the tri-Hamiltonian 
formulation for SIT we derive here. 

2. The spectral problem and Hamiltonian structures 

We wish to construct the isospectral flows of the 
linear spectral problem 

2~'x= U~= (22A +2U~ + Uo)q/, (2.1a) 

where 

(wi 
U / ~  rl  

°1), 
) ,  i = 0 ,  1 .  (2 .1b)  

qi 
- w j  

The SIT equations are known to be one of these 
isospectral flows, when E=q~, E*=-r~, P=qo, 
P*=ro, D = - w o ,  and w~=O. To demonstrate this, 
we seek the solution of the equation 

2V~ = [ U, V], (2.2a) 

in the form V= Z ff=o Vk2 -~'. Substitution of this form 
into (2.2a) gives rise to a recursion relation for Vk: 

Vk+,.x--[U~, Vk+t]-tUo, Vk]=[A, Vk+2] , 

k>_- - 2 ,  (2.2b) 

whose off-diagonal and diagonal points must be 
treated separately. The off-diagonal part of Vk+2 is 
immediately obtained by inverting adA. It would 
appear from (2.2b) that an integration is required 

to obtain the diagonal part of Vk+j SO that our hi- 
erarchy would turn out to be nonlocal. However, 
(2.2a) implies that 

(tr V : ) x = 0 ,  (2.3a) 

so that, by setting 

tr V2=2 , (2.3b) 

we can also determine the diagonal parts of Vk with- 
out any integration: 

k--I 
v~i"g=-~  tr Z ViVk_i. (2.3c) 

i=1 

Thus, the given matrix Vcan be constructed in terms 
of differential polynomials of the coefficients (qi, ri, 
wi). The first three coefficients are given by 

Vo=A, V ' = (  0r, O ) '  

Vz= ( -½q, r, qo-w, qt +½qlx~ (2.4) 
\ro-w, rj-½rlx ½q, r, /" 

An infinite sequence of (polynomial) isospectral 
flows is obtained from the integrability conditions of 
(2.1) and 

=- ~ m-i ~" , ~t,,=Pmql, P,,, [ 2 " V ] + =  V i 
i=0  

m=0,  1, 2 ..... (2.5a) 

which take the form 

Utm=2Pmx-- [U, Pro]. (2.5b) 

The equations of motion for the matrices Uo and U~ 
are expressible as 

UOlm:[Uo, Vm], 

U,,,=V,,,x-[U,, Vm]- [Uo, Vm_,]. (2.6) 

When m =  1 (2.6) recovers the SIT equations ( 1.1 ) 
on the invariant subspace w~ = 0. 

Hamiltonian structures. Upon defining operators 
Jo,  J l  and J2 by 

J o = - a d U o ,  J l = 0 - a d U l ,  

Jz = - a d A ,  (2.7) 

the equations of motion (2.6) take the form 
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(o ° 
(2.8) 

J , ) \  . . .  ) "  

Using the recursion relation (2.2b), written in terms 
of the J 's  as 

Jo Vk +J l  Vk+ I +Jz  Vk+2 = 0 ,  (2.9) 

allows the equations of  motion to be written as 

Ut,.=B2V(m)=BI V(m+I)-~--BoV(m+2) , (2.10a) 

where 

. o  (.., (o o 

( O J ° ) v ( m ) ~ - ( V m _ I ,  Vm)T (2.10b) 
Ba= Jo JI ' 

In these formulae we use the trace to pair the vectors: 

(qo)  /'0) I~0' q l '  /'1' }i/l )W 

*--'(Vg_l V + 2V  ° V2,, Vm,+ 2Vm)O 

where 

(2.11a) 

v =(v ° 
\ V#  - V°,] " (2.1 lb)  

The operators Jk now take the 3 × 3 form 

= 

0 - 2 w  o q @ )  
2Wo 0 

\ -- qo ro 

0 O - 2 w j  ql ) 
O+2wl 0 -r~ , 

\ - q l  rl ½0 
Jl 

J2 = 0 . (2.12) 
0 

The operators Bk expressed this way are easily seen 
to be compatible Hamiltonian structures. 

Remark. The forms of the operators Bk are iden- 
tical to those presented in ref. [ 7 ]. However, in ref. 
[7] the operators Jk are defined by Jk = 
l~kO3 + ukO+ ½U~. 

In order to prove that the vectors V <") are gra- 

dients we first need to check that this is true for V (°) 
and V(~ ). Indeed: 

V~°)=8o%, V ( ~ ) = 8 ~ ,  

where o%=2wt, ~ =2wo+qj r l  . (2.13a) 

We can now invoke lemma 1 of the appendix to prove 
by induction the existence of an infinite sequence of 
functions ~,~, such that 

V(m)= 8~,, Vm>~0. (2.13b) 

Taking these results together, we have 

Theorem. The isospectral flows (2.5b) of  the lin- 
ear spectral problem (2.1a) are tri-Hamiltonian: 

U,.=BE~)Oc{m=BI ~9¢{m+1 =Bo 8aCm+2 • (2.14) 

Furthermore, the Hamiltonians ~(,, Poisson com- 
mute and hence, the isospectral flows of (2.1a) 
commute. 

Remark. The Poisson commutivity of the ~,~ fol- 
lows from lemma 2 of the appendix. 

S I T  reduction. It is easy to see that ~o is a common 
Casimir of  both Bo and B~ (but not of  B/) so that Bo 
and B~ can both be restricted to the level surfaces of 
~o by removing their bottom rows and right columns 
and setting w~ constant. The SIT reduction corre- 
sponds to choosing w~=0 (or to choosing Wl=Ot, 
when detuning is included) and is thus bi-Hamil- 
tonian. The infinite sequence of Hamiltonians re- 
strict to this submanifold. The first three of these are 

1 ~1 =2wo+qlr t  , /,~z=qorl +qlro--~qlrlx, 

1 ,~2r2 ~3 =qoro - Woq~ r~ - ~,~ j .1 

+ ~ ( r o q , x - q o r , x -  ½q,xr,x) . (2.15) 

The SIT equations are given by 

U, =B~ 8 .~  =Bo 8~3, (2.16a) 

which take the explicit form (of. eq. (1.2)):  

qo, = - 2 w o q l  , ro, =2worl , Wo, =q j ro -qor l  , 

q m = q l , + 2 q o ,  r l t , = r l x - 2 r o .  (2.16b) 
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3. Traveling-wave solutions of SIT 

Traveling-wave solutions of the SIT equations, de- 
fined by Ui(x, t) = Uj( t -x) ,  satisfy (after rescaling 
Uo-*2Uo and scaling the wave speed to unity) the 
system of ODEs 

0 o = - 2 w o q l ,  fo=2Worl, ¢Vo=qlro--qorl, 

01=2qo, f l = - - 2 r o ,  (3.1) 

where an overdot denotes derivative with respect to 
r = t - x .  The Lax representation for this system is 
easily derived from (2.5b), with r e = l ,  by 
considering 

L= U+2Pt =222A +22U~ + Uo (3.2a) 

and rescaling as above. After this rescaling, we are 
led to consider 

L=X2A+XU~ + Uo, (3.2b) 

where, for the moment, w~ is not necessarily zero. In 
this case the centraliser of L (within sl(2) ) is just L 
itself. Thus the isospectral flows of L are given by 

L~,=[M,,L], i = 0 , 1 ,  (3.3a) 

Mo = (2 - 2 L )  + =A,  

Mj = (2 -  IL)+ =2.4+ Ul • (3.3b) 

The traveling-wave SIT equations (3.1) correspond 
to Mt (but with wt =0) .  These isospectral flows are 
tri-Hamiltonian with operators D i given by 

0o( : 
(0 o)  34a) 

D2 --- Jo Jl ' 

where 

J o = - a d U o ,  J ~ = - a d U ~ ,  

J2 = - a d A .  (3.4b) 

The Hamiltonians corresponding to the isospectral 
flows are given by the coefficients of ½ trL2: 

ho=2Wl, hl=2wo+q~r~ +w 2, 

h2=qorl +qlro+2WlWo, hs=wg +qoro. (3.5) 

Remark. The operators D~ corresponds to Lie- 

Poisson brackets. When modified with the co-cycle: 

o)(x, y) =2 j tr(XOY) dx, (3.6) 

they give rise to the operators Br of section 2. 
Remark. We can obtain another sequence of Ham- 

iltonians from those of (2.15 ). Since the latter give 
rise to local conservation laws for SIT: 

o~,,, = ~ x ,  (3.7a) 

the traveling-wave property U~ (x, t) = U1 ( t - x )  
implies 

d 
- -  ( ¢ f , + ~ , )  = 0 ,  (3.7b) 
dz~ 

where z l= t l - x .  After the above rescaling, these 
constants are functionally related to those of (3.5). 

As before the Hamiltonians (3.5) satisfy a (now 
finite) tri-Hamiltonian ladder relation: 

DoVho=0,  DiVho=DoVhl=O, 

U~o =D2 Vho =Dl Vhj =Do Vh2, 

U'r  I =D2 ~7hl =Dl Vh2 =Do Vh3 , 

D2Vh2 =Dl Vh3 = 0  , D2 Vh3 =0  . (3.8) 

Thus each operator has two Casimir functions. As 
before, the SIT reduction corresponds to setting ho = 0 
and is bi-Hamiltonian, with operators Do and DI. 

Master symmetry. The translation 2-*2 + s induces 
the transformation L ( 2 ) - * L ( 2 + s )  given by 

Uo = Uo + sUl + s2A , O~ = U~ + 2sA . (3.9a) 

This gives us a simple proof of compatibility of the 
Hamiltonian operators Dr, i=0,  1, 2. We define 
(where I is the 2;<2 identity) 

J ( s ) =  (~ i s I ) ,  (3.9b) 

which is the Jacobian of the inverse of (3.9a), and 
use Dr(s) to denote the operator Di with Uk replaced 
by Ok. We then have 

J(s)D2 (s)JT(s) = D2 - 2sDl +s2Do, 

J(s)DI (s)JT(s) =DI -sDo, 

J(s)Do(s)JT(s) =Do.  (3.10) 

Since D2(Ok) is Hamiltonian, the linear combina- 
tion D2-2sDi  +s2Do is Hamiltonian for all s and 
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thus Do, D~ and D2 define compatible Poisson brack- 
ets. I f  we use hi(s) to denote hi as a function of Ok, 
then 

h3(s) --h3 +sh2 +sEh[ +s3ho Ji-s 4 • (3.11 ) 

Remark. Since h3 is a Casimir of both D~ and D2, 
for all s, we can use (3.10) and (3.11 ) to give an 
alternative proof of  relations (3.8). The infinitesi- 
mal generator of  (3.9a) is the vector field 

v=qlO~o +rlO,o +W~Owo + 2Ow, . (3.12a) 

Eqs. (3.10) and (3.11 ) then imply 

LvD2=-2DI , L , D j = - D o ,  L v D o = 0 ,  

L,h3=h2, Lvhz=2hl, L,hl=3ho, 

L, ho - -4 ,  (3.12b) 

where L~ denotes the Lie derivative in the direction 
of v. A vector field which acts on Hamiltonians and 
Poisson brackets in this way is often called a master 
symmetry, note that, since the Ow, component of v 
does not vanish on the w~ = 0 surface, we cannot di- 
rectly use this master symmetry in the SIT reduction. 

Remark. A similar master symmetry exists in the 
original SIT partial differential equations (2.16b). 
However, we need to embed (2.1) into a more gen- 
eral class of  spectral problem [ 8 ]: 

(~o + El2)l//x = (22A +2U1 + Uo) g/• (3.13) 

Remark. The traveling-wave SIT equations are not 
invariant under the master-symmetry transforma- 
tion. However, compatibility of  its three Hamilto- 
nian structures implies that the SIT equation may be 
expressed in several equivalent forms. Specifically, 
the ladder relations (3.8) imply the identity 

Us, = (aoDz +a~Dl +a2Do) 

X V(Aoh3 +AI h2 +AEhl +A3ho) , 

provided the seven constants ai, i=0 ,  I, 2, and Aj, 
j = 0 ,  1, 2, 3, satisfy the two conditions 

aoAz+a~Aj+azAo=l, aoA3+a~A2+a2Al=O. 

By linearly combining the constants of  motion and 
Hamiltonian structures in this way, one may inves- 
tigate various equivalent representations of  SIT 
traveling-wave dynamics, which range from the 
complex Duffing equation to the spherical pendu- 

lum. See, e.g., ref. [ 9 ] for discussions of various as- 
pects of  the phase-space geometry of these dynamics 
and its chaotic response to periodic perturbations. 
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Appendix 

We present two basic lemmas which are referred 
to in the main body of this paper. A brief introduc- 
tion to the theory of multi-Hamiltonian systems can 
be found in refs. [10,11]. 

A system of evolution equations is said to be bi- 
Hamiltonian if there exist two Hamiltonian opera- 
tors Bo and B~ and two Hamiltonians f# and ~ such 
that 

ut =Bo 8 (q=BI ~i~ff. (A.1) 

It is particularly interesting if the operator Bo + B~ is 
also Hamiltonian, in which case Bo and B~ are said 
to be compatible (in general the sum of the Poisson 
brackets would fail to satisfy the Jacobi identity). The 
importance of compatibility is that it enables us un- 
der certain conditions to construct an infinite hier- 
archy of (Poisson commuting) Hamiltonians. This 
important condition was first noticed by Magri [ 12 ], 
who proved the following pair of lemmas (also see 
ref. [10]):  

Lemma 1. I f  Bo and B l are compatible Hamilto- 
nian operators, with Bo nondegenerate, and 

B~Sfq=Bo~J{, B~ ~ = B o K ,  (A.2) 

then there exists a function :~ff such that K =  ~ .  

To prove the existence of an infinite hierarchy of 
Hamiltonians, ~ ,  related to compatible Hamilto- 
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n ian  opera to r s  Bo, BI, we need  to check  that  two con-  

d i t ions  hold: 

( i )  3 an  inf in i te  sequence  o f  vec to r  func t ions  Ko, 

K~ . . . .  sat isfying 

B I K , , = B o K , , + I  , (A .3 )  

( i i )  3 two f u n c t i o n ( a l ) s  9f'o and  ~ such that  

K o = 8 ~ o ,  K l = 8 ~ .  

It then  fol lows f r o m  the  l e m m a  that  there  exist  func-  

t i o n ( a l ) s  ~ such that  

K,, = 8 J ~  Vn>~0.  (A .4 )  

L e m m a  2. Let  { , }o and  { , }1 deno te  the  Pois-  

son brackets  def ined  respect ively by Bo and B1, which 

are a s sumed  to be  compa t ib l e .  Let  ~o, ~v6~, ... be a se- 

quence  o f  func t ions  de f ined  by (A .3 ) ,  A .4 ) .  T h e n  

these func t ions  mutua l ly  c o m m u t e :  

{ ~ ,  Y ? , , } o = { ~ ,  Yt~m}~ = 0  Vn, m>~0 .  (A .5 )  
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